用于彩色LCD接口的6通道ESD-EMI 防护 UM6401 DFN12 3.0×1.6 ### 描述 UM6401是一款集成TVS二极管的低通滤波器阵列。该器件专为抑制便携式电子设备中不需要的EMI/RFI信号并提供静电放电 (ESD) 保护而设计。这种先进的器件采用固态硅雪崩技术,具有卓越的钳位性能和直流电气特性。经过优化,可保护手机及其他便携式电子设备中的彩色液晶显示屏。 UM6401由六路相同的电路组成,每路都集成了用于ESD保护的TVS二极管和用于EMI滤波的RC网络。串联电阻值为 100Ω ,电容值为10pF,可在800 MHz至2.5GHz范围内实现30dB的最小衰减。TVS二极管可有效抑制超过 $\pm 15kV$ (空气间隙放电)和 $\pm 8kV$ (接触放电)的ESD电压,符合IEC 61000-4-2标准的第4级要求。 UM6401采用符合RoHS标准的12引脚DFN12 3.0×1.6封装。引脚间距为0.5mm,表面采用无铅镍钯处理。该小型封装使其非常适合用于手机、数码相机和PDA等便携式电子产品。 ### 应用 - 彩色LCD保护 - 手机CCD摄像头线路 - 手机底部连接器 ### 特性 - 集成TVS保护的双向EMI/RFI滤波器 - ESD 保护符合 IEC 61000-4-2 第 4 级要求: ±15kV (空气间隙放电) ±8kV (接触放电) - 30dB最小衰减: 800MHz至 2.5GHz - TVS工作电压: 5V - 电阻: 100Ω±15% - 典型电容: 10pF(V_R=2.5V),六通道保护和滤波 - 固态硅雪崩技术 ### 引脚配置 ### 顶部视图 # **Ordering Information** | Part
Number | Working
Voltage | Packaging Type | Channel | Marking
Code | Shipping Qty | |----------------|--------------------|----------------|---------|-----------------|-------------------------------| | UM6401 | 5.0V | DFN12 3.0×1.6 | 6 | 6401 | 3000pcs/7 Inch
Tape & Reel | # **Absolute Maximum Ratings** | Parameter | Symbol | Value | Unit | |---|------------------|------------|---------------| | Junction Temperature | T_{J} | 125 | $\mathcal C$ | | Steady-State Power per Resistor @ 25 °C | P_R | 328 | mW | | Operating Temperature Range | T_{OP} | -40 to 85 | ${\mathbb C}$ | | Storage Temperature Range | T_{STG} | -55 to 150 | ${\mathbb C}$ | | Maximum Lead Temperature for Soldering | $T_{ m L}$ | 260 | ${\mathbb C}$ | # **Electrical Characteristics** | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |------------------------------|--------------------|---|-----|-----|-----|------| | Reverse Stand-Off
Voltage | V_{RWM} | | | | 5 | V | | Reverse Breakdown
Voltage | V_{BR} | I _T =1mA | 6 | 7 | 8 | V | | Reverse Leakage Current | I_R | $V_{RWM}=3.0V$ | | | 0.5 | μΑ | | Total Series Resistance | R_A | I _R =20mA,
Each Line | 85 | 100 | 115 | Ω | | Total Capacitance | C_d | Input to GND,
Each Line,
V _R =0V, f=1MHz | 16 | 20 | 24 | pF | | Total Capacitance | C_d | Input to GND,
Each Line,
$V_R=2.5V$, $f=1MHz$ | 9 | 10 | 12 | pF | | Cut-Off Frequency (Note 1) | $ m f_{3dB}$ | Above this frequency, appreciable attenuation occurs | | 150 | | MHz | Note 1: 50Ω source and 50Ω load termination. # **Typical Operating Characteristics** ### **Typical Insertion Loss S21** ## **Typical Resistance vs. Temperature** ### ESD Clamping (+8kV Contact) ### Analog Crosstalk Curve (S41) ### Capacitance vs. Reverse Voltage ### ESD Clamping (-8kV Contact) ### **Applications Information** ### **Device Connection** The UM6401 is comprised of six identical circuits each consisting of a low pass filter for EMI/RFI suppression and dual TVS diodes for ESD protection. The device is in a 12-pin DFN package. Electrical connection is made to the 12 pins located at the bottom of the device. A center tab serves as the ground connection. The device has a flow through design for easy layout. Pin connections are noted in Figure 1. All path lengths should be kept as short as possible to minimize the effects of parasitic inductance in the board traces. Recommendations for the ground connection are given below. ### **Ground Connection Recommendation** Parasitic inductance present in the board layout will affect the filtering performance of the device. As frequency increases, the effect of the inductance becomes more dominant. This effect is given by Equation 1. | Pin | Identification | | | | |---|----------------|--|--|--| | 1 - 6 | Input Lines | | | | | 7 - 12 | Output Lines | | | | | Center Tab | Ground | | | | | Equation 1: The Impedance of an Inductor at Frequency XLF | | | | | XLF(L,f) = $2 \times \pi \times f \times L$ Where: L= Inductance (H) f = Frequency (Hz) Via connections to the ground plane form rectangular wire loops or ground loop inductance as shown in Figure 2. Ground loop inductance can be reduced by using multiple vias to make the connection to the ground plane. Bringing the ground plane closer to the signal layer (preferably the next layer) also reduces ground loop inductance. Multiple vias in the device ground pad will result in a lower inductive ground loop over two exterior vias. Vias with a diameter d are separated by a distance y run between layers separated by a distance x. The inductance of the loop path is given by Equation 2. Thus, decreasing distance x and y will reduce the loop inductance and result in better high frequency filter characteristics. # Equation 2: Inductance of Rectangular Wire Loop $LRECT(d,x,y) = 10.16*10^{-9}*\left[x*ln\left[\frac{2^{*}y}{d}\right] + y*ln\left[\frac{2^{*}x}{d}\right]\right]$ Where: d = Diameter of the wire (in) x = Length of wire loop (in) y = Breath of wire loop (in) Figure 3 shows the recommended device layout. The ground pad vias have a diameter of 0.008 inches (0.20 mm) while the two external vias have a diameter of 0.010 inches (0.250 mm). The internal vias are spaced approximately evenly from the center of the pad. The designer may choose to use more vias with a smaller diameter (such as 0.005 inches or 0.125 mm) since changing the diameter of the via will result in little change in inductance (i.e. the log function in Equation 2 in highly insensitive to parameter d) . # **Package Information** # **UM6401: DFN12 3.0×1.6** # **Outline Drawing** | DIMENSIONS | | | | | | | | |------------|-------------|------|----------|----------|-------|-------|--| | Symbol | MILLIMETERS | | | INCHES | | | | | | Min | Тур | Max | Min | Тур | Max | | | A | 0.50 | 0.55 | 0.605 | 0.020 | 0.022 | 0.024 | | | A1 | 0.00 | ı | 0.05 | 0.000 | - | 0.002 | | | A3 | 0.15REF | | 0.006REF | | | | | | b | 0.20 | 0.25 | 0.30 | 0.008 | 0.010 | 0.012 | | | D | 2.95 | 3.00 | 3.075 | 0.116 | 0.118 | 0.121 | | | D2 | 2.10 | 2.20 | 2.30 | 0.083 | 0.087 | 0.091 | | | Е | 1.55 | 1.60 | 1.675 | 0.061 | 0.063 | 0.066 | | | E2 | 0.25 | - | 0.50 | 0.010 | - | 0.020 | | | e | 0.50TYP | | | 0.020TYP | | | | | L | 0.23 | - | 0.38 | 0.009 | - | 0.015 | | # **Land Pattern** ### NOTES: - 1. Compound dimension: 3.00×1.60; - 2. Unit: mm; - 3. General tolerance ± 0.05 mm unless otherwise specified; - 4. The layout is just for reference. ### **Tape and Reel Orientation** ### **GREEN COMPLIANCE** Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit: http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration ### **IMPORTANT NOTICE** The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.