

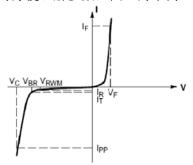
0201 封装的超小型 ESD 保护器件

上海英联电子科技有限公司 徐宁 杨永华

一、前言

ESD 被认为是电子产品质量最大的潜在杀手,影响产品的可靠性,静电防护也就成为电子产品质量控制的一项重要内容。最有效的 ESD 保护方法是设备的连接器或端口处放置外部保护元件。

0201尺寸的硅基 ESD 器件比上一代 0402 型的器件大约缩小了 70%, 能够为手机、MP3 播放器、PDA 和数码相机等便携式电子产品提供保护和提高其可靠性。上海英联电子推出的 UM5051/5052 是一款低容值(12pF)的 ESD 保护器件,实际大小仅为 0.6mm x 0.3mm x 0.3mm,为设计师们在空间受限的应用中提供了灵活性。双向保护消除了在 PCB 板上安装时的方向限制,而且也不会损失负电平信号。


二、UM5051/5052 的重要参数

英联的 UM5051、UM5052 具有低漏电流、低容值、低钳位电压等特点,DFN 的封装可以有效的降低抛料率,降低成本,增加贴片效率。0201 的超小封装,其 ESD 抗冲击性能达到了 IEC 61000-4-2 (ESD) ±30kV (空气)和±25kV(接触)的标准。主要参数如表 1 所示:

衣 1 村性多数衣						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Reverse Stand-Off Voltage	V_{RWM}				5	V
Reverse Breakdown Voltage	V_{BR}	It = 1mA	6	7.2	7.8	V
Reverse Leakage Current	I_R	$V_{RWM} = 5V, T=25$ °C			1	μΑ
Clamping Voltage	V_{c}	$I_{pp} = 5A, t_p = 8/20 \mu S$			12	V
Forward Voltage	V_{F}	$I_F = 1 \text{mA}$		0.8		V
Junction Capacitance	C_J	$V_R = 0V, f = 1MHz$		19	26	pF
Junction Capacitance	C_J	$V_R = 2.5V, f = 1MHz$		11	16	pF

表 1 特性参数表

为方便理解参数,图1为单向ESD保护管的特性曲线图。

100% | 10

图 1 单向 ESD 保护管特性曲线图

图 2 ESD 放电波形图

- 1、击穿电压 V_{BR} (Reverse Breakdown Voltage): 在指定测试电流下ESD保护管发生雪崩击穿时的电压,它是ESD保护管最小的击穿电压。为了满足IEC61000-4-2标准,ESD保护管必须达到可以处理最小8kV(接触)和15kV(空气)的冲击,有的半导体生产厂商在自己的产品上使用了更高的抗冲击标准。上海英联电子的UM5051、UM5052,达到了IEC 61000-4-2 (ESD) \pm 30kV (空气)和 \pm 25kV(接触)的标准。
- 2、反向关断电压V_{RM}(Reverse Peak Working Voltage)和反向漏电流 I_D(Reverse Leakage Current): 指 ESD保护管最大连续工作的直流或脉冲电压。UM5051/UM5052的V_{RM}值为5V,可以保护工作电压为5V的芯片。其反向漏电流小于1 μ A,对产品的功耗几乎没有影响。

3、箝位电压 V_c (Clamping Voltage) 和最大峰值脉冲电流 I_{PP} (Maximum Reverse Peak Pulse Current)。当持续时间为 20mS 的脉冲峰值电流 I_{PP} 流过 ESD 保护管时,在其两端出现的最大峰值电压为 V_c 。

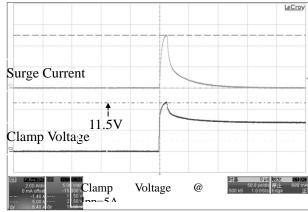


图 3 ESD 钳位电压波形图

- 4、额定脉冲功率 Pppm(Peak Power Dissipation),指 ESD 保护管在指定结温下所能承受的最大峰值脉冲功率。
- 5、电容量 C(Capacitance)。电容量 C 是由保护管的雪崩结截面决定的,是在特定的 1MHz 频率下测得的。电容值太大将使信号衰减。高频回路一般选择电容应尽量小,当频率>100MHz 时,C 必须<10pF。不同速率传输信号的容值选取请参照下图。

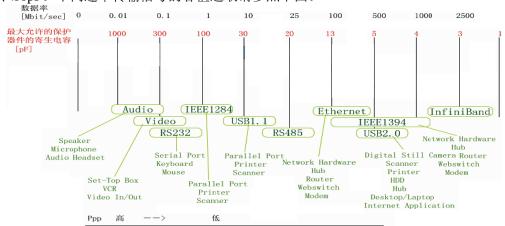


图 4 ESD 保护器件容值选取参考图

6、封装。UM5051/UM5052 的封装为业界最小封装 0201,是智能手机和平板电脑最理想的保护方案选择。图 5 为实物图和封装图。

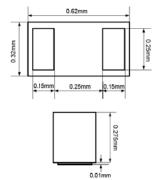


图 5 0201 实物图和封装图

- 三、ESD 保护器件的种类
- 1、单向保护

下图为单向保护示意图,当干扰脉冲信号超过 V_{RWM}时,超过的部分被释放掉。

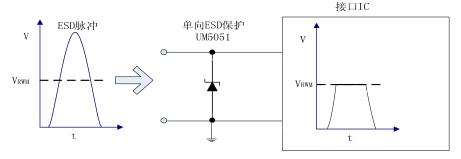


图 6 单向保护示意图

单向 ESD 保护管 UM5051 的反向端接被保护的线路,正向端接地。释放掉反向端输入的超过 V_{RWM} 的 ESD 脉冲,使得脉冲高压不能进入到 IC,从而起到保护 IC 的作用。

2、双向保护

双向 ESD 保护管一端接要保护的线路,一端接地,无论来自反向还是来自正向的脉冲均被释放,更有效地保护了 IC。下图为双向 ESD 保护器件 UM5052 的双向保护示意图。

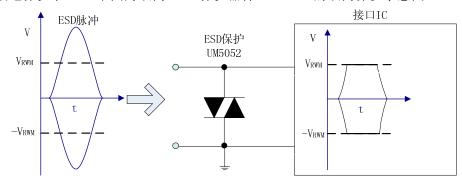


图 7 双向保护示意图

四、ESD 应用举例

1、手机 SIM 卡线路保护

目前手机空间越来越有限,往往矩阵式的 ESD 保护管限制了走线,英联推出的 0201 超小封装 ESD 保护管 UM5051 使 PCB 的布局更加灵活,为设计师节省了宝贵的空间。而 SIM 卡属于经常热插拔器件,要避免使器件工作在其设计参数极限附近,还应根据被保护回路的特征及可能承受 ESD 冲击的特征选用反应速度足够快、敏感度足够高的器件,这对于有效发挥保护器件的作用十分关键。

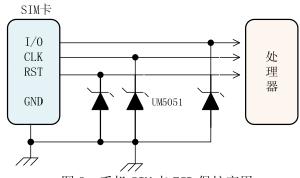


图 8 手机 SIM 卡 ESD 保护应用

2、便携产品音频数据线路保护

便携类产品以体积小备受消费者喜爱,在音频数据线路保护方面,英联推出的 UM5052 单路双向 ESD 保护管,0201 的超小封装为设计师在有限的布板空间中提供了灵活性。由于音频信号传输速率比较低,因此对器件电容的要求不太高,100pF 左右都是可以接受的。

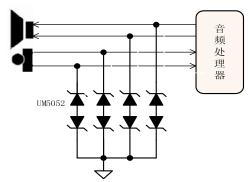


图 9 便携类产品音频数据 ESD 保护应用

3、 穿戴式产品按键线路保护

对于穿戴式产品来说,小巧、轻便、可靠性是设计师考虑的重点。人体的静电放电产品的影响就显得尤为重要了,按键和开关回路这些回路的数据率很低,对器件的电容没有特殊要求。英联推出的 UM5051 为此类产品提供了灵活简单的布线,而且其 ESD 抗冲击能力也达到了 IEC 61000-4-2 (ESD) ±30kV (空气)和±25kV(接触)的标准。

除此之外,小型模块类的数据线路接口、WIFI 模块、蓝牙模块、3G 模块等,都非常适合使用0201 封装的 ESD,为产品提供可靠性的同时,也节省了印制板的空间。

五、0201 封装 ESD 使用注意事项

- 1、ESD 器件应与接口尽量接近,与被保护线路尽量接近,这样才会减少自感耦合到其它邻近线路上的机会。
- 2、尽量避免在保护线路附近走比较关键的信号线,尽量将接口安排在同一个边上。
- 3、避免被保护回路和未实施保护的回路并联,将接口信号线路和接地线路直接接到保护器件上,然后再进入回路的其它部分,将复位、中断、控制信号远离输入/输出口,远离 PCB 的边缘。
- 4、各类信号线及其馈线所形成的回路,环绕面积要尽量小,必要时可考虑改变信号线或接地线的位置。
- 5、尽可能多的增加接地点。
- 6、静电电流通向电源模块的地要足够大和宽,通道要直接和通畅。一般要保证>=3mm,而且越宽越好。