# RELIABILITY REPORT 

## FOR

## UM3699

PLASTIC ENCAPSULATED DEVICES

June 25, 2008

UNION INTEGRATED PRODUCTS

Tina Liu
Quality Assurance
Executive Director

## Conclusion

The UM3699 successfully meets the quality and reliability standards required of all Union products. In addition, Union's continuous reliability monitoring program ensures that all outgoing products will continue to meet Union's quality and reliability standards.

Table of Contents

| I. .........Device Description | V. ........Quality Assurance Information |
| :--- | :--- |
| II. .......Manufacturing Information | VI. ......Reliability Evaluation |
| III. ......Packaging Information |  |
| IV.......Die Information | ......Attachments |

## I. Device Description

A. General

The UM3699 dual independent ultra low $\mathrm{R}_{\mathrm{ON}}$ DPDT analog switch operates from a single +1.65 V to +5.5 V supply. It features a $0.6 \Omega$ (max) $\mathrm{R}_{\mathrm{ON}}$ for its NO and NC switch at a +3.0 V supply.

The UM3699 features break-before-make switching action ( 15 ns ) with $\mathrm{t}_{\mathrm{ON}}=50 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{OFF}}=30 \mathrm{~ns}$ at +4.5 V . The device has a $3.8 \mathrm{~K} \Omega$ internal shut resistors that automatically discharge the capacitance at the normally open ( NO ) and normally closed (NC) terminals when they are not connected. This reduces click-and-pop noises that occur when switching audio signals between precharged points.
B. Absolute Maximum Ratings

Item
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IN}_{-}}$
NO_, NC_, COM_(Note 1)
Continuous Current from COM_ to NO_/NC
Peak Current from COM_ to NO_/NC_( $10 \%$ duty cycle)
Storage Temperature
Lead Temp. (Soldering, 30S)

Rating

```
-0.5V to +5.5V
-0.5V to }\mp@subsup{\textrm{V}}{\textrm{Cc}}{
\pm300mA
\pm500mA
-65 ' C to +150 %
+260 %
```

Note 1: Signals on NO_, NC_, and COM_ exceeding $\mathrm{V}_{\mathrm{CC}}$ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

## II. Manufacturing Information

A. Description/Function:
B. Process:
C. Number of Device Transistors:
D. Fabrication Location:
E. Assembly Location:
F. Date of Initial Production:

## III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112:

Ultra-Low R ${ }_{\text {ON }}$, Dual DPDT Analog Switch
Standard 0.35 micron silicon gate CMOS
5176

Suzhou, Jang Su province, China
KH (Diodes Shanghai)

Dec, 2007

QFN16
$\mathrm{Cu}(\mathrm{C} 7025 \mathrm{HH})$
$\mathrm{Ni} / \mathrm{Pd} / \mathrm{Au}$
Epoxy(QM1519)
Gold (1.0 mil diameter)
EME-G770H-HCD

Attachment: AD-KH-UM3699
Class UL94-V0
IV. Die Information
$60 \times 60$ mils
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
Aluminum/Si (Si=1\%)

Level 1
A. Dimensions:
B. Passivation:
C. Interconnect:
D. Backside Metallization:
E. Minimum Metal Width:
F. Minimum Metal Spacing:
G. Bondpad Dimensions:
H. Isolation Dielectric:
I. Die Separation Method:

None
0.5 microns
0.5 microns
3.5 mil. Sq.
$\mathrm{SiO}_{2}$
Wafer Saw

## V. Quality Assurance Information

A. Outgoing Inspection Level: $0.1 \%$ for all electrical parameters guaranteed by the Datasheet. $0.1 \%$ for all Visual Defects.
B. Observed Outgoing Defect Rate: < 50 ppm
C. Sampling Plan: Mil-Std-105D
VI. Reliability Evaluation
A. Accelerated Life Test

The results of the $125^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate $(\lambda)$ is calculated as follows:
$\lambda=\frac{1}{M T T F}=\frac{1.83}{2 \times 77 \times 168 \times 2502} \quad$ (Chi square value for MTTF upper limit)
$\mathrm{At}=\exp \left(\frac{E_{A}}{k}\right)\left(\frac{1}{T 2}-\frac{1}{T 1}\right)$
$E_{A}=$ Average thermal activation energy for expected failure mechanisms $=0.8 \mathrm{eV}$
$\mathrm{k}=$ Boltzmann's constant $=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$
$\mathrm{T} 1=$ Life test operating temperature $=125^{\circ} \mathrm{C}$
$\mathrm{T} 2=$ System use operating temperature $=25^{\circ} \mathrm{C}$
$\lambda=28.27 \times 10^{-9}$
F.I.T.=28.27 (60\% confidence level @ $25^{\circ} \mathrm{C}$ )

This low failure rate represents data collected from Union's reliability monitor program. In addition to routine production Burn-In, Union pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a $60 \%$ confidence level, which equates to 3 failures in an 80 piece sample. Union performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Attachment 4\#: BI-KH-UM3699) shows the static Burn-In circuit.
B. Moisture Resistance Tests

Union pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD $=20$ or less before shipment as standard product. Additionally, the industry standard $85^{\circ} \mathrm{C} / 85 \%$ RH testing is done per generic device/package family once a quarter.

## C. E.S.D. and Latch-Up Testing

The UW002 die type has been found to have all pins able to withstand a transient pulse of $\pm 2000 \mathrm{~V}$, per Mil- Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of $\pm 200 \mathrm{~mA}$ and/or 9V.

## Attachment \#1

## TABLE I Reliability Evaluation Test Results

## UM3699

| TEST ITEM | TEST CONDITION | FAILURE <br> IDENTIFICATION | SAMPLE <br> SIZE | NUMBER OF <br> FAILURES |
| :--- | :--- | :--- | :--- | :--- |
| Static Life Test (Note 1)Ta $=125^{\circ} \mathrm{C}$ <br> Biased <br> Time $=168 \mathrm{hrs}$. | DC Parameters <br> \& functionality | 77 | 0 |  |

Moisture Testing (Note 2)

| Pressure Pot | $\mathrm{T}=121^{\circ} \mathrm{C}$ | DC Parameters | 77 |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathrm{P}=15 \mathrm{PSIG}$ | \& functionality |  |  |
|  | $\mathrm{RH}=100 \%$ |  |  |  |
|  | $\mathrm{Time}=96 \mathrm{hrs}$. |  | 77 | 0 |
| $85 / 85($ Note 3) | $\mathrm{T}=85^{\circ} \mathrm{C}$ | DC Parameters | \& functionality |  |
|  | $\mathrm{RH}=85 \%$ |  |  |  |
|  | $\mathrm{Vr}=100 \mathrm{~V}$ |  |  |  |
| $\mathrm{Time}=1000 \mathrm{hrs}$. |  |  |  |  |

Mechanical Stress (Note 2)

| Temperature | $-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$ | DC Parameters | 77 |
| :--- | :--- | :--- | :--- |
| Cycle | 1000 Cycles |  | 0 |
|  | JESD22 A-104 |  |  |

Note 1: Life Test Data may represent plastic D.I.P. qualification lots.
Note 2: Generic Package/Process data
Note 3: Board Level

## Attachment \#2

TABLE II. Pin combination to be tested. 1/ $\underline{2}^{/}$

|  | Terminal A <br> (Each pin individually <br> connected to terminal A <br> with the other floating) | Terminal B <br> (The common combination <br> of all like-named pins <br> connected to terminal B) |
| :---: | :---: | :---: |
| 1. | All pins except $\mathrm{V}_{\mathrm{PS} 1}$ 3/ | All $\mathrm{V}_{\mathrm{PS} 1}$ pins |
| 2. | All input and output pins | All other input-output pins |

1/ Table II is restated in narrative form in 3.4 below.
$2 /$ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground (e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

### 3.4 Pin combination to be tested.

a. Each pin individually connected to terminal $A$ with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{S 1}$, or $V_{S S 2}$ or $V_{S S 3}$ or $V_{C C 1}$, or $V_{C C 2}$ ) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.


1.2 打线图 Bonding diagram


Pin1
Note：芯片的 Pin 脚在 wafer 上的对应位置。


[^0]Attachment \#4




[^0]:    此文件 末 经 U N I 0 N 认可不得擅自出版，复制 。

