UM3699 Rev. A

# **RELIABILITY REPORT**

# FOR

# UM3699

# PLASTIC ENCAPSULATED DEVICES

June 25, 2008

# UNION INTEGRATED PRODUCTS

Written by

Reviewed by

Sindy Bi Quality Assurance Engineer Tina Liu Quality Assurance Executive Director

#### Conclusion

The UM3699 successfully meets the quality and reliability standards required of all Union products. In addition, Union's continuous reliability monitoring program ensures that all outgoing products will continue to meet Union's quality and reliability standards.

## **Table of Contents**

I. ......Device Description II. ......Manufacturing Information III. ......Packaging Information IV......Die Information V. .....Quality Assurance Information VI. .....Reliability Evaluation

.....Attachments

### I. Device Description

## A. General

The UM3699 dual independent ultra low  $R_{ON}$  DPDT analog switch operates from a single +1.65V to +5.5V supply. It features a 0.6 $\Omega$  (max)  $R_{ON}$  for its NO and NC switch at a +3.0V supply.

The UM3699 features break-before-make switching action (15ns) with  $t_{ON}$ =50ns and  $t_{OFF}$ =30ns at +4.5V. The device has a 3.8K $\Omega$  internal shut resistors that automatically discharge the capacitance at the normally open (NO) and normally closed (NC) terminals when they are not connected. This reduces click-and-pop noises that occur when switching audio signals between precharged points.

### B. Absolute Maximum Ratings

| Item                                               | Rating                   |
|----------------------------------------------------|--------------------------|
| V <sub>CC</sub> , V <sub>IN</sub> _                | -0.5V to +5.5V           |
| NO , NC , COM (Note 1)                             | -0.5V to V <sub>CC</sub> |
| Continuous Current from COM_ to NO_/NC_            | ±300mA                   |
| Peak Current from COM_ to NO_/NC_ (10% duty cycle) | ±500mA                   |
| Storage Temperature                                | -65°C to +150°C          |
| Lead Temp. (Soldering, 30S)                        | +260°C                   |

Note 1: Signals on NO\_, NC\_, and COM\_ exceeding  $V_{CC}$  or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

# II. Manufacturing Information

| Α. | Description/Function:         | Ultra-Low R <sub>ON</sub> , Dual DPDT Analog Switch |
|----|-------------------------------|-----------------------------------------------------|
| В. | Process:                      | Standard 0.35 micron silicon gate CMOS              |
| C. | Number of Device Transistors: | 5176                                                |
| D. | Fabrication Location:         | Suzhou, Jang Su province, China                     |
| E. | Assembly Location:            | KH (Diodes Shanghai)                                |
| F. | Date of Initial Production:   | Dec, 2007                                           |

## III. Packaging Information

| Α. | Package Type:        | QFN16                    |
|----|----------------------|--------------------------|
| В. | Lead Frame:          | Cu (C7025HH)             |
| C. | Lead Finish:         | Ni/Pd/Au                 |
| D. | Die Attach:          | Epoxy(QM1519)            |
| E. | Bondwire:            | Gold (1.0 mil diameter)  |
| F. | Mold Material:       | EME-G770H-HCD            |
| G. | Assembly Diagram:    | Attachment: AD-KH-UM3699 |
| Н. | Flammability Rating: | Class UL94-V0            |

I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112: Level 1

## IV. Die Information

| A. Dimensions:             | 60 x 60 mils                                       |
|----------------------------|----------------------------------------------------|
| B. Passivation:            | $Si_3N_4/SiO_2$ (Silicon nitride/ Silicon dioxide) |
| C. Interconnect:           | Aluminum/Si (Si=1%)                                |
| D. Backside Metallization: | None                                               |
| E. Minimum Metal Width:    | 0.5 microns                                        |
| F. Minimum Metal Spacing:  | 0.5 microns                                        |
| G. Bondpad Dimensions:     | 3.5 mil. Sq.                                       |
| H. Isolation Dielectric:   | SiO <sub>2</sub>                                   |
| I. Die Separation Method:  | Wafer Saw                                          |

#### V. Quality Assurance Information

- A. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.
  0.1% for all Visual Defects.
- B. Observed Outgoing Defect Rate: < 50 ppm
- C. Sampling Plan: Mil-Std-105D

### VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 125°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate ( $\lambda$ ) is calculated as follows:

energy

$$\lambda = \frac{1}{MTTF} = \frac{1.83}{2 \times 77 \times 168 \times 2502}$$
 (Chi square value for MTTF upper limit)  
At: thermal acceleration factor assuming a 0.8eV activation  
At=exp $\left(\frac{E_A}{k}\right) \left(\frac{1}{T2} - \frac{1}{T1}\right)$ 

 $\label{eq:expected_failure_mechanisms=0.8eV} \begin{array}{l} \mathsf{E}_{\mathsf{A}} = \mathsf{Average thermal activation energy for expected failure mechanisms=0.8eV} \\ \mathsf{k} = \mathsf{Boltzmann's constant} = 8.62 \times 10^{-5} \ \text{eV/K} \\ \mathsf{T1} = \mathsf{Life test operating temperature} = 125^\circ \mathbb{C} \\ \mathsf{T2} = \mathsf{System use operating temperature} = 25^\circ \mathbb{C} \end{array}$ 

 $\lambda = 28.27 \text{ x } 10^{-9}$ 

F.I.T.=28.27 (60% confidence level @ 25°C)

This low failure rate represents data collected from Union's reliability monitor program. In addition to routine production Burn-In, Union pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Union performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Attachment 4#: BI-KH-UM3699) shows the static Burn-In circuit.

### B. Moisture Resistance Tests

Union pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C /85%RH testing is done per generic device/package family once a quarter.

### C. E.S.D. and Latch-Up Testing

The UW002 die type has been found to have all pins able to withstand a transient pulse of  $\pm$  2000V, per Mil- Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of  $\pm$ 200mA and/or 9V.

## Attachment #1

# TABLE I Reliability Evaluation Test Results

## UM3699

| TEST ITEM            | TEST CONDITION                                        | FAILURE<br>IDENTIFICATION        | SAMPLE<br>SIZE | NUMBER OF<br>FAILURES |
|----------------------|-------------------------------------------------------|----------------------------------|----------------|-----------------------|
| Static Life Test     | t (Note 1)                                            |                                  |                |                       |
|                      | Ta = 125°C<br>Biased<br>Time = 168 hrs.               | DC Parameters<br>& functionality | 77             | 0                     |
| Moisture Testir      | ng (Note 2)                                           |                                  |                |                       |
| Pressure Pot         | T = 121°C<br>P = 15 PSIG<br>RH= 100%<br>Time = 96hrs. | DC Parameters<br>& functionality | 77             | 0                     |
| 85/85 (Note 3)       | ) T = 85°C<br>RH = 85%<br>Vr =100V<br>Time = 1000hrs. | DC Parameters<br>& functionality | 77             | 0                     |
| Mechanical Str       | ress (Note 2)                                         |                                  |                |                       |
| Temperature<br>Cycle | -65°C/150°C<br>1000 Cycles<br>JESD22 A-104            | DC Parameters                    | 77             | 0                     |

Note 1:Life Test Data may represent plastic D.I.P. qualification lots.Note 2:Generic Package/Process dataNote 3:Board Level

## Attachment #2

#### TABLE II. Pin combination to be tested. 1/2/

|    | Terminal A<br>(Each pin individually<br>connected to terminal A<br>with the other floating) | Terminal B<br>(The common combination<br>of all like-named pins<br>connected to terminal B) |
|----|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1. | All pins except V <sub>PS1</sub> <u>3/</u>                                                  | All $V_{PS1}$ pins                                                                          |
| 2. | All input and output pins                                                                   | All other input-output pins                                                                 |

- Table II is restated in narrative form in 3.4 below.
- No connects are not to be tested.
- <u>1/</u> <u>2/</u> <u>3/</u> Repeat pin combination I for each named Power supply and for ground

(e.g., where  $V_{PS1}$  is  $V_{DD}$ ,  $V_{CC}$ ,  $V_{SS}$ ,  $V_{BB}$ , GND,  $+V_{S}$ ,  $-V_{S}$ ,  $V_{REF}$ , etc).

- 3.4 Pin combination to be tested.
  - Each pin individually connected to terminal A with respect to the device ground pin(s) connected а. to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
  - Each pin individually connected to terminal A with respect to each different set of a combination b. of all named power supply pins (e.g.,  $V_{SS1}$ , or  $V_{SS2}$  or  $V_{SS3}$  or  $V_{CC1}$ , or  $V_{CC2}$ ) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
  - Each input and each output individually connected to terminal A with respect to a combination of C. all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.







Note: 芯片的 Pin 脚在 wafer 上的对应位置。



# Attachment #4





此文件未经UNION认可不得擅自出版、复制。