UM3302H Rev.01

Reliability Report FOR UM3302H

May16, 2013

UNION SEMICONDUCTOR, INC.

Written by

Approved by

Fang JJ Product Engineer Ivan Product Manager

Conclusion

The UM3302H successfully meets the quality and reliability standards required of all Union products.

Table of Contents

I.Device Description

- II.Manufacturing Information
- III.Packaging Information
- IV.Die Information
- V. Reliability Evaluation

I. Device Description

A. General

The UM3302H, a ESD protected level translator, provides the level shifting necessary to allow data transfer in multi-voltage system. This 2-channel non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V voltage nodes. Both I/O ports are auto-sensing; thus, no direction pin is required, making it ideal for data transfer between low-voltage ASICs /PLDs and higher voltage systems.

The UM3302H operates at a guaranteed data rate of 20Mbps over the entire specified operating voltage range. Within specific voltage domains, higher data rates are up to 100Mbps.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. The UM3302H is designed so that the OE input circuit is designed to track VCCA.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The UM3302H is a dual channel level translator available in 1.90mm×0.90mm CSP8 bump package.

B. Absolute Maximum Ratings	
Item	Rating
All Voltages Referenced to GND	
Supply Voltage (V CCA)	-0.5 to +4.5V
Supply Voltage (V CCB)	-0.5 to +6.5V
A Port Voltage (VA)	-0.5 to +4.5V
B Port Voltage (VB)	-0.5 to +6.5V
Lead soldering temperature (T _L)	300°C (10 sec.)
Operating Temperature (T _{OP})	-40 to +85 °C
Storage Temperature (T _{STG})	-65 to +150 °C

II. Manufacturing Information

- A. Process: CMOS
- B. Wafer Type: UW010
- C. Fabrication Location: P.R.China
- D. Assembly Location: P.R.China

III. Packaging Information

- A. Package Type: CSP8
- B. Lead Frame: N/A
- C. Lead Finish: N/A
- D. Die Attach: N/A
- E. Bond wire: N/A
- F. Mold Material: N/A
- G. Flammability Rating: Class UL94-V0
- H. ESD Level (HBM): ±15KV(B Port); ±2KV(Other Pin)
- J. Classification of Moisture Sensitivity
- per JEDEC standard JESD22-A113: Level 1

IV. Die Information

- A. Dimensions: 820 x 1820 um²
- B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)
- C. Interconnect: Al/Si/Cu
- D. Backside Metallization: N/A
- E. Minimum Metal Width: 0.5 um
- F. Minimum Metal Spacing: 30.5 um
- G. Bondpad Dimensions: 222 x 222 um²
- H. Isolation Dielectric: SiO₂
- J. Die Separation Method: Wafer Saw

V. Reliability Evaluation

A. Operating Life Test

Test Item	Test Condition	Failure Identification	Package	Sample Size	Number of Failure
High Temp	125 °C,168h,1.1Vcc	Electrical	CSP8	77	0
Operating Life		parameters			
JESD22-A108-B		& functionality			

Test Circuit

B. Reliability evaluation test

Test Item	Test Condition	Failure Identification	Package	Sample Size	Number of Failure
Precondition JESD22-A113-D	125°C,24h,85°C/85%RH, 168h, 260°C,3 Times	Electrical parameters & functionality & SAT	CSP8	231	0
Temp. Cycling JESD22-A104-C	-65-150°C,Dewell=15Min, 500 Cycles	Electrical parameters & functionality	CSP8	77	0
Autoclave JESD22-A102-C	121°C,100%RH,2atm, 96hrs	Electrical parameters & functionality	CSP8	77	0
Unbiased Temp/Humidity JESD22-A118-B	130°C/85%RH, 96hrs	Electrical parameters & functionality	CSP8	77	0
High Temp Storage JESD22-A103-B	150°C,1000h	Electrical parameters & functionality	CSP8	77	0

C. ESD and Latch-Up Test

The UM3302H die type has been found to have B Port able to pass \pm 15KV, other Pin pass \pm 2KV ESD human body mode test. (Refer to following ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \pm 200mA.

--The ESD stress is developed with a 100pF capacitor discharging through a 1500 Ω resistor to the device.

--The use of 1500Ω resistor implies that the human body mode approximates a current source.